martes, 2 de junio de 2015

Circuitos integrados

Circuitos integrados

Concepto 

Un circuito integrado o ( ci ) es aquel en el cual todos los componentes, incluyendo transistores, diodos, resistencias, condensadores y alambres de conexión, se fabrican e interconectan completamente sobre un chip o pastilla semiconductor de silicio. Una vez procesado, el chip se encierra en una cápsula plástica o de cerámica que contiene los pines de conexión a los circuitos externos.

Los chips digitales mas pequeños contienen varios componentes sencillos como compuertas, inversores y flip-tops. los mas grandes contienen circuitos y sistemas completos como contadores, memorias, microprocesadores, etc. La mayoría de los circuitos integrados digitales vienen en presentación tipo dip (dual in-line package ) o de doble hilera. Los ci mas comunes tipo dip son los de 8,14,16,24, 40 y 64 pines.

   En la cápsula trae impresa la información respecto al fabricante, la referencia del dispositivo y la fecha de fabricación. Además del tipo dip, existen otras presentaciones comunes de los circuitos integrados digitales como la cápsula metálica, la plana y la " chip carrier". Existen circuitos integrados que utilizan cápsulas smt o de montaje superficial , smt son casi 4 veces mas pequeños que los dip .

  La tecnología smt (surface-mount technology ) es la que ha permitido obtener calculadoras del tamaño de una tarjeta de crédito.

Historia 


La introducción de los tubos de vacío a comienzos del siglo XX propició el rápido crecimiento de la electrónica moderna. Con estos dispositivos se hizo posible la manipulación de señales, algo que no podía realizarse en los antiguos circuitos telegráficos y telefónicos, ni con los primeros transmisores que utilizaban chispas de alta tensión para generar ondas de radio. Por ejemplo, con los tubos de vacío pudieron amplificarse las señales de radio y de sonido débiles, y además podían superponerse señales de sonido a las ondas de radio. El desarrollo de una amplia variedad de tubos, diseñados para funciones especializadas, posibilitó el rápido avance de la tecnología de comunicación radial antes de la II Guerra Mundial, y el desarrollo de las primeras computadoras, durante la guerra y poco después de ella.

Hoy día, el transistor, inventado en 1948, ha reemplazado casi completamente al tubo de vacío en la mayoría de sus aplicaciones. Al incorporar un conjunto de materiales semiconductores y contactos eléctricos, el transistor permite las mismas funciones que el tubo de vacío, pero con un costo, peso y potencia más bajos, y una mayor fiabilidad. Los progresos subsiguientes en la tecnología de semiconductores, atribuible en parte a la intensidad de las investigaciones asociadas con la iniciativa de exploración del espacio, llevó al desarrollo, en la década de 1970, del circuito integrado. Estos dispositivos pueden contener centenares de miles de transistores en un pequeño trozo de material, permitiendo la construcción de circuitos electrónicos complejos, como los de los microordenadores o microcomputadoras, equipos de sonido y vídeo, y satélites de comunicaciones.

El primer circuito Integrado fue creado por Jack Kilby en la empresa Texas Instruments en el año de 1959; poco mas de una década después de la invención del transistor en los laboratorios Bell en 1947.

A partir de 1966 los Circuitos Integrados comenzaron a fabricarse por millones y en la actualidad se considera una pieza esencial en los aparatos electrónicos.

Tipos de Circuitos integrados

Existen al menos tres tipos de circuitos integrados:

A- Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.

B- Circuitos híbridos de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que los progresos en la tecnología permitieron fabricar resistencias precisas.


C- Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula, transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, en cápsulas plásticas o metálicas, dependiendo de la disipación de energía calórica requerida. En muchos casos, la cápsula no está "moldeada", sino que simplemente se cubre el circuito con una resina epoxi para protegerlo. En el mercado se encuentran circuitos híbridos para aplicaciones en módulos de radio frecuencia (RF), fuentes de alimentación, circuitos de encendido para automóvil, etc.

Clasificación

Atendiendo al nivel de integración, número de componentes, los circuitos integrados se pueden clasificar en: 
  • SSI (Small Scale Integration) pequeño nivel: de 10 a 100 transistores
  • MSI (Medium Scale Integration) medio: 101 a 1.000 transistores
  • LSI (Large Scale Integration) grande: 1.001 a 10.000 transistores
  • VLSI (Very Large Scale Integration) muy grande: 10.001 a 100.000 transistores
  • ULSI (Ultra Large Scale Integration) ultra grande: 100.001 a 1.000.000 transistores
  • GLSI (Giga Large Scale Integration) giga grande: más de un millón de transistores 
En cuanto a las funciones integradas, los circuitos se clasifican en dos grandes grupos:

Circuitos integrados analógicos: Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta circuitos completos y funcionales, como amplificadores, osciladores o incluso receptores de radio completos.
Circuitos integrados digitales: Pueden ser desde básicas puertas lógicas (AND, OR, NOT) hasta los más complicados microprocesadores o microcontroladores. Algunos son diseñados y fabricados para cumplir una función específica dentro de un sistema mayor y más complejo.

En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido, de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto a los antiguos circuitos, además de un montaje más eficaz y rápido.

Limitaciones de los circuitos integrados

Existen ciertos límites físicos y económicos al desarrollo de los circuitos integrados. Básicamente, son barreras que se van alejando al mejorar la tecnología, pero no desaparecen. Las principales son:

Disipación de potencia

Los circuitos eléctricos disipan potencia. Cuando el número de componentes integrados en un volumen dado crece, las exigencias en cuanto a disipación de esta potencia, también crecen, calentando el sustrato y degradando el comportamiento del dispositivo. Además, en muchos casos es un sistema de realimentación positiva, de modo que cuanto mayor sea la temperatura, más corriente conducen, fenómeno que se suele llamar "embalamiento térmico" y, que si no se evita, llega a destruir el dispositivo. Los amplificadores de audio y los reguladores de tensión son proclives a este fenómeno, por lo que suelen incorporar protecciones térmicas.

Los circuitos de potencia, evidentemente, son los que más energía deben disipar. Para ello su cápsula contiene partes metálicas, en contacto con la parte inferior del chip, que sirven de conducto térmico para transferir el calor del chip al disipador o al ambiente. La reducción de resistividad térmica de este conducto, así como de las nuevas cápsulas de compuestos de silicona, permiten mayores disipaciones con cápsulas más pequeñas.

Los circuitos digitales resuelven el problema reduciendo la tensión de alimentación y utilizando tecnologías de bajo consumo, como CMOS. Aún así en los circuitos con más densidad de integración y elevadas velocidades, la disipación es uno de los mayores problemas, llegándose a utilizar experimentalmente ciertos tipos de criostatos. Precisamente la alta resistividad térmica del arseniuro de galio es su talón de Aquiles para realizar circuitos digitales con él.

Capacidades y autoinducciones parásitas

Este efecto se refiere principalmente a las conexiones eléctricas entre el chip, la cápsula y el circuito donde va montada, limitando su frecuencia de funcionamiento. Con pastillas más pequeñas se reduce la capacidad y la autoinducción de ellas. En los circuitos digitales excitadores de buses, generadores de reloj, etc, es importante mantener la impedancia de las líneas y, todavía más, en los circuitos de radio y de microondas.

Límites en los componentes

Los componentes disponibles para integrar tienen ciertas limitaciones, que difieren de sus contrapartidas discretas.

  • Resistores: Son indeseables por necesitar una gran cantidad de superficie. Por ello sólo se usan valores reducidos y en tecnologías MOS se eliminan casi totalmente.
  • Condensadores: Sólo son posibles valores muy reducidos y a costa de mucha superficie. Como ejemplo, en el amplificador operacional μA741, el condensador de estabilización viene a ocupar un cuarto del chip.
  • Inductores: Se usan comúnmente en circuitos de radiofrecuencia, siendo híbridos muchas veces. En general no se integran.

Densidad de integración

Durante el proceso de fabricación de los circuitos integrados se van acumulando los defectos, de modo que cierto número de componentes del circuito final no funcionan correctamente. Cuando el chip integra un número mayor de componentes, estos componentes defectuosos disminuyen la proporción de chips funcionales. Es por ello que en circuitos de memorias, por ejemplo, donde existen millones de transistores, se fabrican más de los necesarios, de manera que se puede variar la interconexión final para obtener la organización especificada.

El Osciloscopio

El Osciloscopio

Concepto 

     El osciloscopio es basicamente un dispositivo de visualización gráfica que muestra señales electricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa el voltaje; mientras que el eje horizontal, denominado X, representa el tiempo. Este dispositivo nos permite:

● Determinar directamente el periodo y el voltaje de una señal.
● Determinar indirectamente la frecuencia de una señal.
● Determinar que parte de la señal es DC y cual AC.
● Localizar averias en un circuito.
● Medir la fase entre dos señales.
● Determinar que parte de la señal es ruido y como varia este en el tiempo.

Los osciloscopios son de los instrumentos más versatiles que existen y lo utilizan desde técnicos de reparación de televisores a médicos. Un osciloscopio puede medir un gran número de fenomenos, provisto del transductor adecuado (un elemento que convierte una magnitud física en señal eléctrica) será capaz de darnos el valor de una presión, ritmo cardiaco, potencia de sonido, nivel de vibraciones en un coche, etc.

Tipos de Osciloscopios

Osciloscopio Digital
Los equipos electrónicos se dividen en dos tipos: Analógicos y Digitales. Los primeros trabajan con variables continuas mientras quie los segundos lo hacen con variables discretas. Por ejemplo un tocadiscos es un equipo analógico y un Compact Disc es un equipo digital.

Los Osciloscopios también pueden ser analógicos ó digitales. Los primeros trabajan directamente con la señal aplicada, está una vez amplificada desvia un haz de electrones en sentido vertical proporcionalmente a su valor. En contraste los osciloscopios digitales utilizan previamente un conversor analógico-digital (A/D) para almacenar digitalmente la señal de entrada, reconstruyendo posteriormente esta información en la pantalla.
Osciloscopio Analago

Ambos tipos tienen sus ventajas e inconvenientes. Los analógicos son preferibles cuando es prioritario visualizar variaciones rápidas de la señal de entrada en tiempo real. Los osciloscopios digitales se utilizan cuando se desea visualizar y estudiar eventos no repetitivos (picos de tensión que se producen aleatoriamente).

Funcionamiento del Osciloscopio

Osciloscopio Analógico

Cuando se conecta la sonda a un circuito, la señal atraviesa esta última y se dirige a la sección vertical. Dependiendo de donde situemos el mando del amplificador vertical atenuaremos la señal ó la amplificaremos. En la salida de este bloque ya se dispone de la suficiente señal para atacar las placas de deflexión verticales (que naturalmente estan en posición horizontal) y que son las encargadas de desviar el haz de electrones, que surge del catodo e impacta en la capa fluorescente del interior de la pantalla, en sentido vertical. Hacia arriba si la tensión es positiva con respecto al punto de referencia (GND) ó hacia abajo si es negativa.

La señal también atraviesa la sección de disparo para de esta forma iniciar el barrido horizontal (este es el encargado de mover el haz de electrones desde la parte izquierda de la pantalla a la parte derecha en un determinado tiempo). El trazado (recorrido de izquierda a derecha) se consigue aplicando la parte ascendente de un diente de sierra a las placas de deflexión horizontal (las que estan en posición vertical), y puede ser regulable en tiempo actuando sobre el mando TIME-BASE. El retrazado (recorrido de derecha a izquierda) se realiza de forma mucho más rápida con la parte descendente del mismo diente de sierra.

De esta forma la acción combinada del trazado horizontal y de la deflexión vertical traza la gráfica de la señal en la pantalla. La sección de disparo es necesaria para estabilizar las señales repetitivas (se asegura que el trazado comienze en el mismo punto de la señal repetitiva).
En la siguiente figura puede observarse la misma señal en tres ajustes de disparo diferentes: en el primero disparada en flanco ascendente, en el segundo sin disparo y en el tercero disparada en flanco descendente.


Como conclusión para utilizar de forma correcta un osciloscopio analógico necesitamos realizar tres ajuste básicos: 
  • La atenuación ó amplificación que necesita la señal. Utilizar el mando AMPL. para ajustar la amplitud de la señal antes de que sea aplicada a las placas de deflexión vertical. Conviene que la señal ocupe una parte importante de la pantalla sin llegar a sobrepasar los límites. 
  • La base de tiempos. Utilizar el mando TIMEBASE para ajustar lo que representa en tiempo una división en horizontal de la pantalla. Para señales repetitivas es conveniente que en la pantalla se puedan observar aproximadamente un par de ciclos. 
  • Disparo de la señal. Utilizar los mandos TRIGGER LEVEL (nivel de disparo) y TRIGGER SELECTOR (tipo de disparo) para estabilizar lo mejor posible señales repetitivas.  
Por supuesto, también deben ajustarse los controles que afectan a la visualización: FOCUS (enfoque), INTENS. (intensidad) nunca excesiva, Y-POS (posición vertical del haz) y X-POS (posición horizontal del haz).

Osciloscopio Digital

Los osciloscopios digitales poseen además de las secciones explicadas anteriormente un sistema adicional de proceso de datos que permite almacenar y visualizar la señal.

Cuando se conecta la sonda de un osciloscopio digital a un circuito, la sección vertical ajusta la amplitud de la señal de la misma forma que lo hacia el osciloscopio analógico.

El conversor analógico-digital del sistema de adquisición de datos muestrea la señal a intervalos de tiempo determinados y convierte la señal de voltaje continua en una serie de valores digitales llamados muestras. En la sección horizontal una señal de reloj determina cuando el conversor A/D toma una muestra. La velocidad de este reloj se denomina velocidad de muestreo y se mide en muestras por segundo.



Los valores digitales muestreados se almacenan en una memoria como puntos de señal. El número de los puntos de señal utilizados para reconstruir la señal en pantalla se denomina registro. La sección de disparo determina el comienzo y el final de los puntos de señal en el registro. La sección de visualización recibe estos puntos del registro, una vez almacenados en la memoria, para presentar en pantalla la señal.

Dependiendo de las capacidades del osciloscopio se pueden tener procesos adicionales sobre los puntos muestreados, incluso se puede disponer de un predisparo, para observar procesos que tengan lugar antes del disparo.

Fundamentalmente, un osciloscopio digital se maneja de una forma similar a uno analógico, para poder tomar las medidas se necesita ajustar el mando AMPL.,el mando TIMEBASE asi como los mandos que intervienen en el disparo.

Métodos de muestreo

Se trata de explicar como se las arreglan los osciloscopios digitales para reunir los puntos de muestreo. Para señales de lenta variación, los osciloscopios digitales pueden perfectamente reunir más puntos de los necesarios para reconstruir posteriormente la señal en la pantalla. No obstante, para señales rápidas (como de rápidas dependerá de la máxima velocidad de muestreo de nuestro aparato) el osciloscopio no puede recoger muestras suficientes y debe recurrir a una de estas dos técnicas: 
  • Interpolación, es decir, estimar un punto intermedio de la señal basandose en el punto anterior y posterior.
  • Muestreo en tiempo equivalente. Si la señal es repetitiva es posible muestrear durante unos cuantos ciclos en diferentes partes de la señal para después reconstruir la señal completa.

Muestreo en tiempo real con Interpolación

El método standard de muestreo en los osciloscopios digitales es el muestreo en tiempo real: el osciloscopio reune los suficientes puntos como para recontruir la señal. Para señales no repetitivas ó la parte transitoria de una señal es el único método válido de muestreo.

Los osciloscopios utilizan la interpolación para poder visualizar señales que son más rápidas que su velocidad de muestreo. Existen básicamente dos tipos de interpolación:

1- Lineal: Simplemente conecta los puntos muestreados con lineas. 

2- Senoidal: Conecta los puntos muestreados con curvas según un proceso matemático, de esta forma los puntos intermedios se calculan para rellenar los espacios entre puntos reales de muestreo. Usando este proceso es posible visualizar señales con gran precisión disponiendo de relativamente pocos puntos de muestreo.

Muestreo en tiempo equivalente

Algunos osciloscopios digitales utilizan este tipo de muestreo. Se trata de reconstruir una señal repetitiva capturando una pequeña parte de la señal en cada ciclo.Existen dos tipos básicos: 

Muestreo secuencial: Los puntos aparecen de izquierda a derecha en secuencia para conformar la señal. 

Muestreo aleatorio: Los puntos aparecen aleatoriamente para formar la señal.

Controles del Osciloscopio

En general, los osciloscopios tienen un panel frontal de controles referente a cada uno de los canales de entrada, generador de barrido, control de posición horizontal y vertical de las señales, entre otros.

Controles generales

1. Pantalla con cuadrícula. Esta es el área donde aparece el trazo luminoso y corresponde a la
pantalla de observación del tubo de rayos catódicos. Dicha pantalla posee una cuadrícula de
8 divisiones de ancho por 10 divisiones de altura. Cada división mide aproximadamente un
centímetro y en los ejes centrales, cada división se subdivide en 5 partes iguales.

2. Control de intensidad (intensity). Ajusta la intensidad del brillo del trazo luminoso.

3. Control de rotación del trazo. Permite alinear el trazo luminoso con el eje horizontal de la
pantalla.

4. Control de enfoque. Varía el radio del haz del de electrones que choca contra la pantalla y
enfoca el haz de electrones mejorando la nitidez del trazo.

5. Terminal CAL. Este terminal proporcional una señal de onda cuadrada de 1 KHz de
frecuencia y una amplitud de 0,2 Volt pico a pico. Se utiliza para ajustar la compesación de
las puntas de prueba.

6. Conexión a tierra. Este es un terminal que permite la conexión al aterramiento eléctrico del
aparato lo cual se hace a su vez por medio del cable de alimentación del mismo instrumento.

Controles Verticales

El osciloscopio marca BK PRECISION, MODELO 2120B, posee dos canales de entrada,
es decir, que puede recibir dos señales distintas y mostrarlas simultáneamente en la pantalla.
Cada canal posee un conjunto de controles similares (enumerados del 7 al 12).

7. Control de sensibilidad vertical (VOLTS/DIV). Consiste en un selector, donde cada
posición del mismo viene marcada por un número que indica el valor de voltaje que
corresponde a una división de la pantalla. Para ello es necesario que la perilla que se
encuentra en el centro del selector (control VAR) esté en la posición CAL, rotación completa
en sentido anti-horario. En el modo X-Y, ajusta la sensibilidad del eje X.

8. Control VAR. Este control debe estar normalmente en la posición CAL. La rotación de este
control facilita un ajuste fino de la sensibilidad vertical. Esto permite que la forma de onda
pueda ser ajustada a número exacto de divisiones, aun cuando las medidas verticales no sean
las realmente indicadas en el control de sensibilidad VOLTS/DIV.
Nota. Cuando se hala esta perilla, la sensibilidad vertical se incrementa en un factor de
cinco (PULL X5). Por ejemplo, la posición 5mV/DIV se transforma en 1 mv/DIV.

9. Conector de entrada. En este punto se acoplan las puntas de prueba del instrumento y a
través del mismo se introducen las señales en estudio al canal 1 del instrumento ( o al canal X
en el modo de funcionamiento X-Y). A este tipo de conector se le conoce como BNC (British
Nacional Connector). 

10. Selector de modo de acoplamiento (AC-GND-DC). Permite el acoplamiento de la señal al
osciloscopio en tres modos: AC-GND-DC.

10.1. AC. Las señales se acoplan en el modo capacitivo; se bloquean las señales DC. El
límite de baja frecuencia es de aproximadamente 10 Hz.

10.2. GND. Se desconecta el circuito de entrada y ninguna señal es recibida por el
instrumento. Coloque el selector en esta posición cuando se desee alinear el trazo
a una línea de referencia determinada sin necesidad de desconectar las puntas de
prueba.

10.3. DC. Modo de acoplamiento directo de la señal de entrada. Habilita la entrada de
componentes AC y DC al instrumento.

11. Control de posición vertical ( POS). 

Términos utilizados al medir


Existe un término general para describir un patrón que se repite en el tiempo: onda. Existen ondas de sonido, ondas oceanicas, ondas cerebrales y por supuesto, ondas de tensión. Un osciloscopio mide estas últimas. Un ciclo es la mínima parte de la onda que se repite en el tiempo. Una forma de onda es la representación gráfica de una onda. Una forma de onda de tensión siempre se presentará con el tiempo en el eje horizontal (X) y la amplitud en el eje vertical (Y).

La forma de onda nos proporciona una valiosa información sobre la señal. En cualquier momento podemos visualizar la altura que alcanza y, por lo tanto, saber si el voltaje ha cambiado en el tiempo (si observamos, por ejemplo, una linea horizontal podremos concluir que en ese intervalo de tiempo la señal es constante). Con la pendiente de las lineas diagonales, tanto en flanco de subida como en flanco de bajada, podremos conocer la velocidad en el paso de un nivel a otro, pueden observarse también cambios repentinos de la señal (angulos muy agudos) generalmente debidos a procesos transitorios.

Tipos de ondas

Se pueden clasificar las ondas en los cuatro tipos siguientes:

Ondas senoidales

Ondas cuadradas y rectangulares

Ondas triangulares y en diente de sierra.

Pulsos y flancos ó escalones.

Ondas senoidales

Son las ondas fundamentales y eso por varias razones: Poseen unas propiedades matemáticas muy interesantes (por ejemplo con combinaciones de señales senoidales de diferente amplitud y frecuencia se puede reconstruir cualquier forma de onda), la señal que se obtiene de las tomas de corriente de cualquier casa tienen esta forma, las señales de test producidas por los circuitos osciladores de un generador de señal son también senoidales, la mayoria de las fuentes de potencia en AC (corriente alterna) producen señales senoidales.

La señal senoidal amortiguada es un caso especial de este tipo de ondas y se producen en fenomenos de oscilación, pero que no se mantienen en el tiempo.

Ondas cuadradas y rectangulares

Las ondas cuadradas son básicamente ondas que pasan de un estado a otro de tensión, a intervalos regulares, en un tiempo muy reducido. Son utilizadas usualmente para probar amplificadores (esto es debido a que este tipo de señales contienen en si mismas todas las frecuencias). La televisión, la radio y los ordenadores utilizan mucho este tipo de señales, fundamentalmente como relojes y temporizadores.

Las ondas rectangulares se diferencian de las cuadradas en no tener iguales los intervalos en los que la tensión permanece a nivel alto y bajo. Son particularmente importantes para analizar circuitos digitales.

Ondas triangulares y en diente de sierra

Se producen en circuitos diseñados para controlar voltajes linealmente, como pueden ser, por ejemplo, el barrido horizontal de un osciloscopio analógico ó el barrido tanto horizontal como vertical de una televisión. Las transiciones entre el nivel mínimo y máximo de la señal cambian a un ritmo constante. Estas transiciones se denominan rampas.

La onda en diente de sierra es un caso especial de señal triangular con una rampa descendente de mucha más pendiente que la rampa ascendente.



Pulsos y flancos ó escalones

Señales, como los flancos y los pulsos, que solo se presentan una sola vez, se denominan señales transitorias. Un flanco ó escalón indica un cambio repentino en el voltaje, por ejemplo cuando se conecta un interruptor de alimentación. El pulso indicaria, en este mismo ejemplo, que se ha conectado el interruptor y en un determinado tiempo se ha desconectado. Generalmente el pulso representa un bit de información atravesando un circuito de un ordenador digital ó también un pequeño defecto en un circuito (por ejemplo un falso contacto momentáneo). Es común encontrar señales de este tipo en ordenadores, equipos de rayos X y de comunicaciones. 


Medidas en las formas de onda

En esta sección describimos las medidas más corrientes para describir una forma de onda.

Periodo y Frecuencia

Si una señal se repite en el tiempo, posee una frecuencia (f). La frecuencia se mide en Hertz (Hz) y es igual al numero de veces que la señal se repite en un segundo, es decir, 1Hz equivale a 1 ciclo por segundo.

Una señal repetitiva también posee otro paramentro: el periodo, definiéndose como el tiempo que tarda la señal en completar un ciclo.

Peridodo y frecuencia son reciprocos el uno del otro:


Voltaje

Voltaje es la diferencia de potencial eléctrico entre dos puntos de un circuito. Normalmente uno de esos puntos suele ser masa (GND, 0v), pero no siempre, por ejemplo se puede medir el voltaje pico a pico de una señal (Vpp) como la diferencia entre el valor máximo y mínimo de esta. La palabra amplitud significa generalmente la diferencia entre el valor máximo de una señal y masa.

Fase

La fase se puede explicar mucho mejor si consideramos la forma de onda senoidal. La onda senoidal se puede extraer de la circulación de un punto sobre un circulo de 360º. Un ciclo de la señal senoidal abarca los 360º.


Cuando se comparan dos señales senoidales de la misma frecuencia puede ocurrir que ambas no esten en fase,o sea, que no coincidan en el tiempo los pasos por puntos equivalentes de ambas señales. En este caso se dice que ambas señales estan desfasadas, pudiendose medir el desfase con una simple regla de tres:

360º \\ t ------ x}\right\}"

Siendo t el tiempo de retraso entre una señal y otra.

Parámetros influyen en la calidad de un osciloscopio


Los términos definidos en esta sección nos permitiran comparar diferentes modelos de osciloscopio disponibles en el mercado.

Ancho de Banda

Especifica el rango de frecuencias en las que el osciloscopio puede medir con precisión. Por convenio el ancho de banda se calcula desde 0Hz (continua) hasta la frecuencia a la cual una señal de tipo senoidal se visualiza a un 70.7% del valor aplicado a la entrada (lo que corresponde a una atenuación de 3dB).

Tiempo de subida

Es otro de los parámetros que nos dará, junto con el anterior, la máxima frecuencia de utilización del osciloscopio. Es un parámetro muy importante si se desea medir con fiabilidad pulsos y flancos (recordar que este tipo de señales poseen transiciones entre niveles de tensión muy rápidas). Un osciloscopio no puede visualizar pulsos con tiempos de subida más rápidos que el suyo propio.

Sensibilidad vertical

Indica la facilidad del osciloscopio para amplificar señales débiles. Se suele proporcionar en mV por división vertical, normalmente es del orden de 5 mV/div (llegando hasta 2 mV/div).

Velocidad

Para osciloscopios analógicos esta especificación indica la velocidad maxima del barrido horizontal, lo que nos permitirá observar sucesos más rápidos. Suele ser del orden de nanosegundos por división horizontal.

Exactitud en la ganancia

Indica la precisión con la cual el sistema vertical del osciloscopio amplifica ó atenua la señal. Se proporciona normalmente en porcentaje máximo de error.

Exactitud de la base de tiempos

Indica la precisión en la base de tiempos del sistema horizontal del osciloscopio para visualizar el tiempo. También se suele dar en porcentaje de error máximo.

Velocidad de muestreo

En los osciloscopios digitales indica cuantas muestras por segundo es capaz de tomar el sistema de adquisición de datos (especificamente el conversor A/D). En los osciloscopios de calidad se llega a velocidades de muestreo de Megamuestras/sg. Una velocidad de muestreo grande es importante para poder visualizar pequeños periodos de tiempo. En el otro extremo de la escala, también se necesita velocidades de muestreo bajas para poder observar señales de variación lenta. Generalmente la velocidad de muestreo cambia al actuar sobre el mando TIMEBASE para mantener constante el número de puntos que se almacenaran para representar la forma de onda.

Resolución vertical

Se mide en bits y es un parámetro que nos da la resolución del conversor A/D del osciloscopio digital. Nos indica con que precisión se convierten las señales de entrada en valores digitales almacenados en la memoria. Técnicas de cálculo pueden aumentar la resolución efectiva del osciloscopio.

Longitud del registro

Indica cuantos puntos se memorizan en un registro para la reconstrucción de la forma de onda. Algunos osciloscopios permiten variar, dentro de ciertos límites, este parámetro. La máxima longitud del registro depende del tamaño de la memoria de que disponga el osciloscopio. Una longitud del registro grande permite realizar zooms sobre detalles en la forma de onda de forma muy rápida (los datos ya han sido almacenados), sin embargo esta ventaja es a costa de consumir más tiempo en muestrear la señal completa.


Transistor, Tipos de Transistores

Transistor

Concepto 

     El transistor es un dispositivo electrónico semiconductor utilizado para entregar una señal de salida en respuesta a una señal de entrada.1 Cumple funciones de amplificador, oscilador, conmutador o rectificador. El término «transistor» es la contracción en inglés de transfer resistor («resistor de transferencia»). Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radios, televisores, reproductores de audio y video, relojes de cuarzo, computadoras, lámparas fluorescentes, tomógrafos, teléfonos celulares, entre otros. 

Tipos de transistores


Transistor de contacto puntual 

Llamado también «transistor de punta de contacto», fue el primer transistor capaz de obtener ganancia, inventado en 1947 por John Bardeen y Walter Brattain. Consta de una base de germanio, semiconductor para entonces mejor conocido que la combinación cobre-óxido de cobre, sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de base es capaz de modular la resistencia que se «ve» en el colector, de ahí el nombre de transfer resistor. Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.

Transistor de union Bipolar 

El transistor de unión bipolar (o BJT, por sus siglas del inglés bipolar junction transistor) se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.

La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o «huecos» (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).

La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor está mucho más contaminado que el colector).

El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.

Transistor de efecto de campo 

El transistor de efecto de campo de unión (JFET), fue el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contactos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando la puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.


El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.

Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.

Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.
Existen dos tipos de MOSFET en función de su estructura interna: los de empobrecimiento y los de enriquecimiento. Los primeros tienen un gran campo de aplicación como amplificadores de señales débiles en altas frecuencias o radio-frecuencia (RF), debido a su baja capacidad de entrada. Los segundos tienen una mayor aplicación en circuitos digitales y sobre todo en la construcción de circuitos integrados, debido a su pequeño consumo y al reducido espacio que ocupan.

Fototransistor 

Los fototransistores son sensibles a la radiación electromagnética en frecuencias cercanas a la de la luz visible; debido a esto su flujo de corriente puede ser regulado por medio de la luz incidente. Un fototransistor es, en esencia, lo mismo que un transistor normal, sólo que puede trabajar de 2 maneras diferentes:

Como un transistor normal con la corriente de base (IB) (modo común);
Como fototransistor, cuando la luz que incide en este elemento hace las veces de corriente de base. (IP) (modo de iluminación).


Triodo, Concepto y Partes

Triodo

Concepto

     El Triodo es un componente electrónico de tres electrodos utilizado para amplificar una señal eléctrica mediante el control del movimiento de los electrones. 


Partes del triodo

Está formado por: 
  • El cátodo, que al calentarse produce electrones.
  • El ánodo, que está cargado positivamente y por tanto atrae electrones.
  • La rejilla, situada entre cátodo y ánodo. 
     La tensión aplicada a la rejilla hace que el flujo de electrones desde el cátodo al ánodo sea mayor o menor, gracias a esto aplicando una señal de muy débil intensidad entre cátodo y rejilla podemos conseguir que la variación del flujo de electrones entre éste y el ánodo sea muy grande ( con una pequeña tensión controlamos una gran corriente ), por eso el triodo es un amplificador aunque también se usó para la detección de las señales.

Parámetros importantes del triodo

Los parametros importantes del triodo y en general de todas las válvulas termogionicas de tres o mas electrodos son:

La Curva característica de rejilla, que es el diagrama que se obtiene con los valores de intensidad de corriente de placa o ánodo en función de los potenciales aplicados en la rejilla.

El Factor de amplificación (µ) se define como el cociente entre la tensión de placa y la tensión de rejilla, manteniendo la corriente de placa constante, cuando se aplica una señal a la rejilla. Así un factor de amplificación µ = 8, significa que la variación de corriente de placa cuando variamos 1 voltio el potencial de rejilla, es la misma que se produciría al variar 8 voltios la tensión de placa. El Factor de amplificación (µ) es un número abstracto.

El valor de la transconductancia depende del punto de la curva característica de rejilla en el que la válvula esté trabajando. Una transconductancia alta significa que pequeñas modificaciones del potencial de rejilla se traducen en grandes variaciones de la corriente de placa.

La transconductancia ó conductancia mutua se mide en mho, unidad inversa del ohmio, ó siemens, aunque en la práctica se emplea el µmho ó µsiemens que es igual a 10-6 mhos.

La resistencia interna (rp) es el cociente entre la tensión de placa (Va) y la corriente de placa (Ia) mientras mantenemos constante la tensión de rejilla (Vg).

Los tres parámetros fundamentales de un triodo están relacionados mediante la expresión:
μ = gm · rp

Tanto el factor de amplificación (µ), transconductancia (gm) y resistencia interna (rp), son parámetros dinámicos, es decir, dependen del punto de polarización y por tanto están constantemente variando según varía la señal que está circulando por el dispositivo.

Diodo, concepto y partes

Diodo

Concepto


     Un diodo es un componente electrónico que permite el paso de la corriente en un sentido y lo impide en el contrario. Esta provisto de dos terminales, el ánodo (+) y el cátodo (-) y, por lo general conduce la corriente en el sentido ánodo- cátodo.










  • La polarización directa se produce cuando el polo positivo del generador eléctrico se une al ánodo del diodo y el polo negativo se une al cátodo. En este caso el diodo se comporta como un conductor y deja pasar la corriente. 

  • La polarización inversa se produce cuando el polo positivo del generador eléctrico se une al cátodo del diodo y el negativo al ánodo. En este caso el diodo no permite el paso de la corriente.

Modelos    

                                       1ra Aproximación               2ra Aproximación                3ra Aproximación


Partes de un Diodo

     Los diodos están compuestos por dos zonas de material semiconductor (silicio, germanio) formando lo que se denominada unión P-N. En otras palabras constan de dos partes o zonas bien diferenciadas:
  • La zona P se caracteriza por poseer una escasez de electrones y corresponde a la parte del ánodo (positivo).
  • La zona N presenta un exceso de electrones y corresponde a la parte del cátodo (negativo).

     En el lugar de contacto de las zonas P y N en el diodo, se crea una región denominada “de transición” en donde se genera una diferencia potencial y se crean iones positivo e iones negativos en cada uno de los lados. Para que los electrones se puedan mover se necesita superar esta diferencia potencial, si esto es logrado se producirá la corriente eléctrica, circulando los electrones de la zona N a la P y la corriente de la P a la N.











Efecto Termoiónico

Efecto Termoiónico

Concepto 

     El efecto termoionico o la emisión termoiónica es un fenómeno que se da en los metales. En los átomos de éstos, existen electrones con un movimiento arbitrario, y cuya velocidad depende de la temperatura. Conforme aumenta la temperatura, crece su velocidad, pudiendo abandonar la superficie metálica.

     A medida que los electrones abandonan el cátodo, forman una "nube electrónica", similar a las moléculas que forman un gas y cuya carga neta es negativa, puesto que está formada por electrones. El emisor de estos electrones es el cátodo, que se calienta mediante una resistencia o filamento de tungsteno puro, toriado o recubierto de una capa de óxido de bario. El filamento se calienta haciendo pasar una corriente (la corriente de caldeo).  Si ahora aplicamos una tensión entre ánodo y cátodo (Vak) siendo el ánodo más positivo, se produce una corriente eléctrica al ser los electrones atraídos por el ánodo, que está a potencial positivo.

   
A esta corriente se le llama corriente de placa. Si se aumenta la tensión (Vak) , se produce un aumento de la corriente de placa (Ia), hasta alcanzar el valor de saturación (Is), en el que la corriente no aumenta por mucho de subamos la tensión aplicada. Esto es debido a que la placa recoge todos los electrones que emite el cátodo, y no puede aumentar la corriente a menos que aumentásemos la emisión de electrones subiendo la temperatura de caldeo. La corriente de saturación (Is) depende entonces del número de electrones que emita el cátodo.

Existen dos tipos de cátodo atendiendo al modo en que se calienta.
Cátodo de caldeo directo, el emisor es un simple filamento de tungsteno.
Cátodo de caldeo indirecto. El filamento está recubierto de óxido de bario e introducido en un pequeño cilindro de níquel; el filamento y el cilindro están eléctricamente aislados.

El Electrón y sus aplicaciones

El Electrón y sus aplicaciones

Historia del electrón 

     La palabra electrón proviene de la palabra griega "elektron" que traducida al español equivale a ámbar, los antiguos griegos observaron que al frotar un paño contra un trozo de ámbar este adquiría propiedades de atracción hacia otros materiales, dicho fenómeno es conocido hoy en día como electricidad estática y está basado en el intercambio de electrones entre el paño y el ámbar.
     La primera vez que se acuñó el término electrón fue en 1874 cuando el físico irlandés George Johnstone Stoney estudiando la naturaleza de la electricidad introdujo el concepto de electrón como la unidad fundamental de la electricidad.
     Fue en 1897 cuando Sir Jospeh J. Thomson en la universidad de Cambridge detectó mediante un experimento (rayos catódicos) la presencia de una partícula 2000 veces más ligera que el ión de hidrógeno, se había descubierto por primera vez en la historia la presencia de los electrones, confirmándose la existencia de estas diminutas partículas que forman parte del átomo. Pero no fue hasta 1909 cuando físico estadounidense Robert Millikan determinó con exactitud tanto la carga como su masa, dichos descubrimientos le permitieron acceder al premio nobel de física.
     El electrón posee una masa aproximada de 9.11 x 10-31 kg y posee una carga eléctrica negativa de 1,60 x 10-19 Coulomb, siendo la partícula atómica con carga más ligera jamás descubierta. Por último en el año 1932 el físico estadounidense Carl D. Anderson confirmó la presencia de la antipartícula del electrón, llamada positrón la cual tiene la misma masa y carga eléctrica pero con signo positivo.

Concepto 

     Un electrón es considerado como una partícula diminuta y fundamental que forma parte de la estructura del átomo con una carga eléctrica negativa y que orbita alrededor del núcleo atómico, el electrón aporta la mayoría de las propiedades fisico-químicas de los elementos y materiales del universo, el electrón es representado con el símbolo e-
     Según los modelos clásicos, la estructura interna del átomo está compuesta por un núcleo con carga positiva al cual orbitan una serie de pequeñas partículas con carga negativa llamadas electrones, la suma de cargas positivas es igual al número de cargas negativas o electrones, haciendo neutro y estable el átomo.
     Con el transcurso del tiempo se descubrió que el núcleo de los átomos está formado por neutrones y protones, estos últimos son lo que aportan las cargas positivas al átomo, durante el último siglo y con la ayuda de los aceleradores de partículas se descubrió que los neutrones y protones a su vez están formados por partículas subatómicas denominadas quarks, mientras que los electrones parecen que no están formados por otro tipo de partículas subatómicas, por ello se considera al electrón como una partícula fundamental.

Aplicaciones 

     Los electrones intervienen y aportan la mayoría de las propiedades fisco-químicas de los elementos que nos rodean, el magnetismo de un imán es producido por el ordenamiento de los electrones en una sola dirección, las fuerzas de atracción y repulsión de cualquier átomo, molécula o material están basadas en el exceso o ausencia de electrones, los procesos químicos de oxidación están basados en un transvase de electrones de un material a otro, los enlaces químicos que forman las moléculas, tejidos y órganos que crean la vida del universo están basados en la compartición o emisión y aceptación de electrones entre los átomos, la electricidad que alimenta a todos los aparatos y máquinas que utilizamos diariamente está basado en el movimiento o flujo de electrones... Como puedes observar esta diminuta partícula es la fuente de la vida y de todos los materiales que nos rodean. 

     
Sin duda la aplicación más conocida de los electrones es la generación de corriente eléctrica como fuente de energía a los diversos aparatos y máquinas de uso cotidiano, la corriente eléctrica se basa en un flujo de electrones de un punto a otro, 1 amperio eléctrico corresponde a un flujo de 6,25 x 1018 electrones por segundo. 

     Las baterías de los coches, ordenadores portátiles y smartphones, los motores eléctricos que permiten el movimiento de trenes de alta velocidad, la generación de aire frio o caliente mediante máquinas frigoríficas, la iluminación y el alumbrado de todas las casas, industrias y ciudades del mundo, la energía que alimenta a nuestra televisión, batidora, radio, aspiradora, lavavajillas y demás electrodomésticos, la procesos químicos de recubrimientos de metales conocidos como galvanoplastia... todos están basados en la electricidad y por ende en los electrones. 

     
Los rayos X están basados en el fenómeno de radiación de energía cuando un haz de electrones choca con un material, dicha radiación es altamente penetrante y permite por ejemplo su uso en radiografías médicas para el diagnósticos de enfermedades así como para su tratamiento, en la industria se utilizan como medios para analizar y validar materiales mediante ensayos no destructivos como herramienta de verificación y calidad, en el campo de la investigación se utilizan en observatorios espaciales como telescopios. 

     
Haces de electrones utilizados en los proceso de soldadura, corte y creación de objetos a nivel industrial así como la limpieza y desinfección en tratamientos de superficies, en el área de la investigación los haces de electrones son el principio de funcionamiento de los microscopios electrónicos que nos permiten observar cualquier tipo de de material u organismo a nivel atómico.